Genus: Picea

Picea

By Science Staff

Not peer reviewed

Last Modified 03/05/2013

Back to Pinaceae

Nomenclature

Picea A. Dietr., Fl. Berlin 1(2): 794. 1824. TYPE: Picea rubra A. Dietr., nom. illeg. (=Picea abies (L.) H. Karst.).

Peuce L. C. Rich., Ann. Mus. Par. 16: 298. 1810. TYPE: Unknown.

Key to the species of Picea

1. Twigs glabrous...2
1. Twigs pubescent...4

2. Leaves 2-4 cm long, spreading at right angles from the branch...Picea pungens
2. Leaves 0.8-2 (-2.5) cm long, arching forward from the branch...3

3. Leaves malodorous when crushed; winter buds obtuse...Picea glauca
3. Leaves not malodorous when crushed; winter buds acute...Picea abies

4. Decurrent ridges on twigs below needle attachment rounded on top side; cones generally 2.5 cm or longer...Picea rubens
4. Decurrent ridges on twigs below needle attachment flattened on top side; cones generally less than 2.5 cm...Picea mariana

List of Picea Species

References to Picea

  • Abbott, H. G. 1962. Tree seed preferences of mice and voles in the Northeast. J. Forest. 60(2): 97-9.
  • Abrams, M. D. et.al. 2001. Dendroecology and climatic impacts for a relict, old-growth, bog forest in the Rodge and Valley Province of central Pennsylvania, U.S.A. Canad. J. Bot. 79: 58-69.
  • Adams, H. S.; Stephenson, S. L. 1989. Old-growth red spruce communities in the mid-Appalachians. Vegetatio 85: 45-56.
  • Ahlgren, C. E.; Ahlgren, I. F. 1981. Some effects of different forest litters on seed germination and growth. Canad. J. Forest Res. 11: 710-714.
  • Alden, B. 1987. Taxonomy and geography of the genus Picea. Int. Dendr. Soc. Yearb. 1986: 85-96., London.
  • Alfieri, F. J.; Evert, R. F. 1973. Structure and seasonal development of the secondary phloem in the Pinaceae. Bot. Gaz. 134(1): 17-25.
  • Alscher, R. G.; et al. et.al. 1989. Seasonal changes in the pigments, carbohydrates and growth of red spruce as affected by ozone. New Phyt. 113: 211-23.
  • Amundson, R. G.; et al. et.al. 1992. Comparisons of seasonal changes in photosynthetic capacity, pigments, and carbohydrates of healthy sapling and mature red spruce and of declining and healthy red spruce. Canad. J. Forest Res. 22: 1605-16.
  • Amundson, R. G.; et al. et.al. 1993. Moderate water stress alters carbohydrate content and cold tolerance of red spruce foliage. Environm. Exp. Bot. 33: 383-90.
  • Andersson, E. 1965. Cone and seed studies in Norway spruce (Picea abies (L.) Karst.). Stud. Forest. Suec. 23
  • Arp, P. A.; Manase, J. 1988. Red spruce stands downwind from a coal-burning power generator: tree-ring analysis. Canad. J. Forest Res. 18(2): 251-64.
  • Bailey, C. M.; Ware, S. 1990. Red spruce forests of Highland County, Virginia: biogeographical considerations. Castanea 55: 245-58.
  • Baldwin, H. I. 1935. Seasonal variations in the germination of red spruce. Amer. J. Bot. 22: 392-4.
  • Baldwin, H. I. 1931. The period of height growth in some northeastern conifers. Ecology 12: 665-89.
  • Baldwin, H. I. 1933. The density of spruce and fir reproduction related to the direction of exposure. Ecology 14(2): 152-6.
  • Baldwin, H. I. 1934. Germination of the red spruce. Pl. Physiol. (Lancaster) 9: 491-532.
  • Bartholin, T. 1979. The Picea-Larix problem. IAWA Bull. 1: 7-10.
  • Barton, L. V. 1930. Hastening the germination of some coniferous seeds. Amer. J. Bot. 17: 88-115.
  • Battles, J. J.; Fahey, T. J. 1996. Spruce decline as a disturbance event in the subalpine forests of the northeastern United States. Canad. J. Forest Res. 26(3): 408-21. (French summary)
  • Battles, J. J.; Fahey, T. J.; Harney, E. M. B. 1995. Spatial patterning in the canopy gap regime of a subalpine Abies-Picea forest in the northeastern United States. J. Veg. Sci. 6(6): 807-14.
  • Battles, J. J.; et al. et.al. 1992. Red spruce death: effect on forest composition and structure on Whiteface Mountain, New York. Bull. Torrey Bot. Club 119: 418-30.
  • Begin, C.; Filion, L. 1999. Black spruce (Picea mariana) architecture. Canad. J. Bot. 77: 664-672.
  • Bernier, P. Y. 1993. Comparing natural and planted black spruce seedlings. I. Water relations and growth. Canad. J. Forest Res. 23: 2427-34.
  • Bigras, F. J.; Hebert, C. 1996. Freezing temperatures and exposure times during bud break and shoot elongation influence survival and growth of containerized black spruce (Picea mariana) seedlings. Canad. J. Forest Res. 26: 1481-9. (French summary)
  • Birks, H. J. B.; Peglar, S. M. 1980. Identification of Picea pollen of late Quaternary age in eastern North America: a numerical approach. Canad. J. Bot. 58: 2043-58.
  • Blum, B. M. 1988. Variation in the phenology of bud flushing in white and red spruce. Canad. J. Forest Res. 18(3): 315-9.
  • Bobola, M. S. 1996. Using nuclear and organelle DNA markers to discriminate among Picea rubens, Picea mariana, and their hybrids. Canad. J. Forest Res. 26: 433-43. (French summary)
  • Bobola, M. S. et.al. 1996. Hybridization between Picea rubens and Picea mariana: Differences observed between montane and coastal island populations. Canad. J. Forest Res. 26: 444-52. (French summary)
  • Boivin, S.; Begin, Y. 1997. Development of a black spruce (Picea mariana) shoreline stand in relation to snow level variations at Lake Bienville in northern Quebec. Canad. J. Forest Res. 27: 295-303.
  • Bonan, G. B.; Sirois, L. 1992. Air temperature, tree growth, and the northern and southern range limits to Picea mariana. J. Veg. Sci. 3: 495-506.
  • Bongarten, B. C.; Hanover, J. W. 1982. Hybridization among white, red, blue and white x blue spruces. Forest Sci. 28: 129-34.
  • Borghetti, M. et.al. 1988. Geographic variation in cones of Norway spruce (Picea abies (L.) Karst.). Silvae Genet. 37: 178-184.
  • Bouille, M.; Bousquet, J. 2005. Trans-species shared polymorphisms at orthlogous nuclear gene loci among distant species in the conifer Picea (Pinaceae): implications for the long-term maintenance of genetic diversity in trees. Amer. J. Bot. 92: 63-73.
  • Boyce, R. L. 1995. Patterns of foliar injury to red spruce on Whiteface Mountain, New York, during a high-injury winter. Canad. J. Forest Res. 5: 166-9. (French summary.)
  • Boyle, C. D.; Hellenbrand, K. E. 1991. Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Canad. J. Bot. 69(8): 1764-71.
  • Boyle, T. 1990. Genetic structure of black spruce on two contrasting sites. Heredity 65: 393-9.
  • Brand, D. G.; Janas, P. S. 1988. Growth and acclimation of planted white pine and white spruce seedlings in response to environmental conditions. Canad. J. Forest Res. 18(3): 320-9.
  • Bubier, J. L. 1991. Patterns of Picea mariana (black spruce) growth and raised bog development in Victory Basin, Vermont. Bull. Torrey Bot. Club 118: 399-411.
  • Buchholz, J. T. 1948. Generic and subgeneric distribution of the Coniferales. Bot. Gaz. 110: 80-91.
  • Buchholz, J. T. 1920. Embryo development and polyembryony in relation to the phylogeny of conifers. Amer. J. Bot. 7: 125-45.
  • Bump, N. G. 1926. Some observations of forest tree seeds and the early development of the seedlings. M.S. Thesis Cornell Univ., Ithaca, NY64 p.
  • Busing, R. T. 2004. Red spruce dynamics in an old southern Appalachian forest. J. Torrey Bot. Soc. 131: 337-342. (also Abies fraseri)
  • Butts, D.; Buchholz, J. T. 1940. Cotyledon numbers in conifers. Trans. Illinois State Acad. Sci. 33: 58-62.
  • Carleton, T. J.; Wannamaker, B. A. 1987. Mortality and self-thinning in postfire black spruce. Ann. Bot. 59: 621-8.
  • Caron, G. E.; Powell, G. R. 1989. Cone size and seed yield in young Picea mariana trees. Canad. J. Forest Res. 19: 351-8.
  • Caron, G. E.; Powell, G. R. 1989. Patterns of seed-cone and pollen-cone production production in young Picea mariana trees. Canad. J. Forest Res. 19: 359-64.
  • Caron, G. E.; Powell, G. R. 1992. Patterns of cone distribution in crowns of young Picea mariana. I. Effect of tree age on seed cones. Canad. J. Forest Res. 22(1): 46-55.
  • Caron, G. E.; Powell, G. R. 1990. Morphological variation, frequency, and distribution of bisporangiate strobili in Picea mariana. Canad. J. Bot. 68: 1826-30. (French summary)
  • Chai, T. S.; Hansen, H. L. 1952. Characteristics of black spruce seed from cones of different ages. Minnesota Forest. Notes 2: 1-.
  • Clark, J.; Bonga, J. M. 1970. Photosynthesis and respiration in black spruce (Picea mariana) parasitized by eastern dwarf mistletoe (Arceuthobium pusillum). Canad. J. Bot. 48: 2029-31.
  • Clark, J.; Gibbs, R. D. 1957. Studies in tree physiology. IV. Further investigations of seasonal changes in moisture content of certain Canadian forest trees. Canad. J. Bot. 35: 219-53.
  • Collingwood, G. H. 1943. Black spruce. Amer. Forests 49: 36-7.
  • Conkey, L. E. 1986. Red spruce tree-ring widths and densities in eastern North America as indicators of past climates. Quatern. Res. 26: 232-43.
  • Cook, D. B. 1941. Five seasons' growth of conifers. Ecology 22(3): 285-96.
  • Cook, D. B.; Smith, R. H. 1964. Planting an adverse site in New York -II. J. Forest. 62(3): 161-2.
  • Cope, E. A. 1986. Native and cultivated conifers of northeastern North America. Cornell Univ. Press, Ithaca, NY.
  • CotÚ, J. F.; Thibault, J. R. 1988. Allelopathic potential of raspberry (Rubus idaes) foliar leachates on growth of ectomycorrhizal fungi associated with black spruce (Picea mariana). Amer. J. Bot. 75(7): 966-70.
  • Dallimore, W.; Jackson, A. B. 1966. A handbook of Coniferae and Ginkgoaceae, revised by S.G. Harrison. ed. St. Martins Press, New York.
  • DeHayes, D. H.; Hawley, G. J. 1988. Genetic uniformity may be a factor in red spruce decline. Diversity 16: 21-2.
  • Denneler, B; Bergeron, Y.; Begin, Y. 1999. An attempt to explain the distribution of the tree species composing the riparian forests of Lake Duparquet, southern boreal region of Quebec, Canada. Canad. J. Bot. 77: 1744-1755.
  • Doyle, J.; Kam, A. 1944. Pollination in Tsuga pattoniana and in species of Abies and Picea. Sci. Proc. Roy. Dublin Soc. 24: 43-62.
  • Duman, M. G. 1957. Resin cavity pattern in the needles of black, red, and white spruce. Bull. Torrey Bot. Club 84: 388.
  • Eager, C.; Adams, M. B. (eds.) (1992): 1992. Ecology and decline of red spruce in the eastern United States. Ecological Studies. Vol. 96. Springer-Verlag, New York. , 417 pages. (ISBN 0-387-97786-4. See review in Ecology 74(7):2170-2071. 1993.)
  • Eaton, R. J. 1931. Peculiar aspects of the New England distribution of Arceuthobium pisillum. Rhodora 33(388): 92-101.
  • Eckenwalder, J. E. 2009. Conifers of the world. Timber Press, Portland, OR. , 720 pages. (ISBN 9780881929744)
  • Eckert, R. T. 1988. Genetic variation in red spruce and its relation to forest decline in the northeastern United States. In: Air pollution and forest decline. Proceedings of the 14th International Meeting for Specialists in Air Pollution Effects of Forest Ecosystems, IUFRO P2.05. Oct. 2-8, 1988, Interlaken, Switzerland. , 319-24 pages.
  • Fajvan, M. A.; Seymour, R. S. 1993. Canopy stratification, age structure, and development of multicohort stands of eastern white pine, eastern hemlock, and red spruce. Canad. J. Forest Res. 23(9): 1799-809.
  • Farjon, A. 1990. A bibliography of conifers. Koeltz Scientific Books, Königstein, Germany.
  • Fernald, M. L. 1909. A new variety of Abies balsmea. Rhodora 11: 201-3.
  • Fincher, J. et al. et.al. 1989. Long-term ozone exposure affects winter hardiness of red spruce (Picea rubens Sarg.) seedlings. New Phyt. 113: 85-96.
  • Fincher, J.; Alscher, R. G. 1992. The effects of long-term ozone exposure on injury in seedlings of red spruce (Picea rubens Sarg.). New Phyt. 120: 49-59.
  • Florin, R. 1955. The systematics of gymnosperms. In: A century of progress in the natural sciences, 1853-1953. California Acad. Sci., San Francisco. , 323-403 pages.
  • Flory, W. S. 1936. Chromosome numbers and phylogeny in the gymnosperms. J. Arnold Arbor. 17: 83-9.
  • Fowler, D. P.; Mullin, R. E. 1977. Upland-lowland ecotypes not well developed in black spruce in northern Ontario. Canad. J. Forest Res. 7: 35-40.
  • Fraser, D. A. 1962. Growth of spruce seedlings under long photoperiods.
  • Fraser, D. A.; McGuire, D. 1969. Total growth of a black spruce (Picea mariana) tree at Chalk River, Ontario, Canada. Canad. J. Bot. 47: 73-84.
  • Fraser, J. W. 1976. Viability of black spruce seed in or on a boreal forest seed bed. Forest. Chron. 52: 229-31.
  • Fraser, J. W. 1970. Cardinal temperatures for germination of six provenances of black spruce seed. Information Report PS-X-23.
  • Friedland, A. J.; Miller, E. K. 1992. Effects of atmospheric deposition on elemental cycling in a forested ecosystem.
  • Fuller, G. D. 1913. Reproduction by layering in the black spruce. Bot. Gaz. 55: 452-7.
  • Galipeau, C.; Kneeshaw, D.; Berberon, Y. 1997. White spruce (Picea glauca) and balsam fir (Abies balsamea) colonization of a site in the southeastern boreal forest as observed 68 years after fire. Canad. J. Forest Res. 27: 139-47.
  • Gevorkiantz, S. R. 1957. Site index curves for black spruce in the Lake States.
  • Gordon, A. G. 1976. The taxonomy and genetics of Picea rubens and its relationship to Picea mariana. Canad. J. Bot. 54(9): 781-813. (Extensive bibliography)
  • Gordon, A. G. 1952. Spruce identification by twig characters. Forest. Chron. 28(3): 43-5.
  • Gordon, A. G. 1957. Red spruce in Ontario. Sylva 13(1): 1-7.
  • Grant, D.; Hart, A. C. 1961. Effect of seedbed preparation on natural reproduction of spruce and hemlock under dense shade.
  • Greene, D. F. et.al. 2002. The effect of light availability and basal area on cone production in Abies balsamea and Picea glauca. Canad. J. Bot. 80: 370-377.
  • Greene, D. F. et.al. 1999. A review of the regeneration dynamics of North American boreal forest tree species. Canad. J. Forest Res. 29: 824-839.
  • Greenway, K. J.; MacDonald, S. E.; Lieffers, V. J. 1992. Is long-lived foliage in Picea mariana an adaptation to nutrient-poor conditions? Oecologia 91(2): 184-91.
  • Groot, A.; Horton, B. J. 1995. Age and size structure of natural and second-growth peatland Picea mariana stands. Canad. J. Forest Res. 24: 225-33.
  • Guedes, M.; Dupuy, P. 1974. Morphology of the seed-scale complex in Picea abies (L.) Karst. (Pinaceae). J. Linn. Soc. Bot. 68: 127-41.
  • Hamburg, S.; Cogbill, C. V. 1988. Historical decline of red spruce populations and climatic warming. Nature 331(6155): 428-31.
  • Hanover, J. W.; Wilkinson, R. C. 1970. Chemical evidence for introgressive hybridization in Picea. Silvae Genet. 19: 17-22.
  • Hart, A. C. 1959. Silvical characteristics of red spruce (Picea rubens).
  • Hart, A. C.; Abbott, H. G.; Ladd, E. R. 1968. Do small mammals and birds affect reproduction of spruce and fir?
  • Hawley, G. J.; DeHayes, D. H. 1994. Genetic diversity and population structure of red spruce (Picea rubens). Canad. J. Bot. 72(12): 1778-86.
  • Heimburger, C. C. 1939. Notes on red spruce. Forest. Chron. 15: 226-7.
  • Hoddincott, J.; Scott, R. 1996. The influence of light quality and carbon dioxide enrichment on the growth and physiology of seedlings of three conifer species. I. Growth respones. II. Physiological responses. Canad. J. Bot. 74(3): 383-402.
  • Hoffman, R. L. 1950. Records of Picea in Virginia. Castanea 15: 55-8.
  • Hollick, A. 1901. Discovery of a mastodon's tooth and the remains of a boreal vegetation in a swamp on Staten Island, N.Y. Ann. New York Acad. Sci. 14: 67-68.
  • Hopkins, A. 1980. Insect enemies of the spruce in the northeast.
  • Howard, E. W. 1970. Dissemination and viability of seed from upland black spruce in central Newfoundland.
  • Inderjit.; Mallik, A. U. 1996. The nature of interference potential of Kalmia angustifolia. Canad. J. Forest Res. 26: 1899-904. (French summary; also Picea mariana)
  • Jablanczy, A. 1964. Identification of black, red and white spruce seedlings.
  • Jaramillo-Correa, J. P.; Bousquet, J. 2003. New evidence from mitochondrial DNA of a progenitor-derivative species relationship between black spruce and red spruce (Pinaceae). Amer. J. Bot. 90: 1801-1806.
  • Jeffers, R. M. 1974. Key to identifying young North American spruce seedlings.
  • Jeglum, J. K. 1974. Relative influence of moisture-aeration and nutrients on vegetation and black spruce growth in northern Ontario. Canad. J. Forest Res. 4: 114-26.
  • Johnson, A. H. et al. et.al. 1994. Acid rain and soils of the Adirondacks. II. Evaluation of calcium and aluminum as causes of red spruce decline at Whiteface Mountain, New York. Canad. J. Forest Res. 24: 654-62. (See Erratum: Can. J. For. Res. 24(11):2298.)
  • Johnson, A. H.; Siccama, T. G. 1983. Acid deposition and forest decline. Environ. Sci. Technol. 17: 294A-305A.
  • Johnson, K. H. 1993. Growth and ecophysiological responses of black spruce seedlings to elevated CO2 under varied water and nutrient additions. Canad. J. Forest Res. 23: 1033-42.
  • Johnson, K. H.; Major, J. E.; Loo, J.; McPhee, D. 1998. Negative heterosis not apparent in 22-year-old hybrids of Picea mariana and Picea rubens. Canad. J. Bot. 76: 434-9.
  • Johnson, K. H.; Seiler, J. R.; Major, J. E. 1996. Growth, shoot phenology and physiology of diverse seed sources of black spruce: II. 23-year-old trees. Tree Physiology 16: 375-80.
  • Khalil, M. A. K. 1987. Genetic variation in red spruce(Picea rubens Sarg.). Silvae Genet. 36: 164-71.
  • Khalil, M. A. K. 1984. Genetics of cone morphology of black spruce (Picea mariana (Mill.) B.S.P.) in Newfoundland, Canada. Silvae Genet. 33: 101-9.
  • Klein, R. M.; Adams, G. T.; Liedeker, H.; Perkins, T. D. 1994. Characterizations of the short needle phenomenon in red spruce. Amer. J. Bot. 81(4): 461-5.
  • Kneeshaw, D. D.; Bergeron, Y. 1996. Ecological factors affecting the abundance of advanced regeneration in Quebec's southwestern boreal forest. Canad. J. Forest Res. 26: 888-98. (French summary)
  • Kohut, R. J. et al. et.al. 1990. Effects of ozone and acid precipitation on the growth and photosynthesis of red spruce after two years of exposure. Water Air Soil Pollut. 51: 277-86.
  • Koppenaal, R. S.; Colombo, S. J. 1988. Heat tolerance of actively growing, bud-initiated, and dormant black spruce seedlings. Canad. J. Forest Res. 18(9): 1103-5.
  • Lazzaro, M. D. 1999. Microtubule organization in germinated pollen of the conifer Picea abies (Norway Spruce, Pinaceae). Amer. J. Bot. 86: 759-766.
  • LeBarron, R. K. 1945. Adjustment of black spruce root systems to increasing depth of peat. Ecology 26(3): 309-11.
  • Leak, W. B. 1975. Age distribution in virgin red spruce and northern hardwoods. Ecology 56(6): 1451-4.
  • Leblanc, D. C. 1992. Spatial and temporal variation in the prevalence of growth decline in red spruce populations of the northeastern United States. Canad. J. Forest Res. 22(9): 1351-63.
  • Lieffers, V. J.; Rothwell, R. L. 1987. Rooting of peatland black spruce and tamarack in relation to depth of water table. Canad. J. Bot. 65: 817-21.
  • Lieffers, V. J.; Rothwell, R. L. 1986. Effects of depth of water table and substrate temperature on root and top growth of Picea mariana and Larix laricina seedlings. Canad. J. Forest Res. 16: 1201-6.
  • Liu, T. S. 1982. A new proposal for the classification of the genus Picea. Acta Phytotax. Geobot. 33: 227-45.
  • Logan, K. T. 1969. Growth of tree seedlings as affected by light intensity. Part IV. Black spruce, white spruce, balsam fir and eastern white cedar.
  • Maguire, D. A. et.al. 1998. Crown structure and growth efficiency of red spruce in uneven-aged, mixed-species stands in Maine. Canad. J. Forest Res. 28: 1233-1240.
  • Major, J. E. et.al. 2005. Reproductive barriers and hybridity in two spruces, Picea rubens and Picea mariana, sympatric in eastern North America. Canad. J. Bot. 83: 163-175.
  • Major, J. E.; Johnson, K. H. 1996. Family variation in photosynthesis of 22-year-old black spruce: a test of two models of physiological response to water stress. Canad. J. Forest Res. 26: 1922-33. (French summary)
  • Mallik, A. U. 1987. Allelopathic potential of Kalmia angustifolia on black spruce (Picea marian). Forest Ecol. & Manag. 20: 43-51.
  • Man, R.; Lieffers, V. J. 1997. Seasonal variations of photosynthetic capacities of white spruce (Picea glauca) and jack pine (Pinus banksiana) saplings. Canad. J. Bot. 75: 1766-71.
  • Manley, S. A. M. 1971. Identification of red, black and hybrid spruces.
  • Manley, S. A. M.; Ledig, F. T. 1979. Photosynthesis in black and red spruce and their hybrid derivatives: ecological isolation and hybrid adaptive inferiority. Canad. J. Bot. 57: 305-14.
  • Marco, H. F. 1932. The identification of spruces (Picea) by needle structure. M.S. Thesis New York State Coll. For. at Syracuse Univ., Syrac,
  • Marco, H. F. 1939. The anatomy of spruce needles. J. Agric. Res. 58: 357-67.
  • McAfee, B. J.; Fortin, J. A. 1989. Ectomycorrhizal colonization on black spruce and jack pine seedlings outplanted in reforestation sites. Pl. & Soil 116: 9-17.
  • McIntosh, R. P.; Hurley, R. T. 1964. The spruce-fir forests of the Catskill Mountains. Ecology 45: 314-426.
  • McLaughlin, S. B.; Downing, D. J.; Blasing, T. J.; Cook, E. R.; Adams, H. S. 1987. An analysis of climate and competition as contributors to decline of red spruce in high elevation forests of the eastern United States. Oecologia 72: 487-501.
  • McLeod, J. W. 1961. Comparative phenology of five provenances of red spruce. Forest. Chron. 37(3): 213-22.
  • Mikkola, L. 1969. Observations on interspecific sterility in Picea. Ann. Bot. Fenn. 6: 285-367.
  • Mitchell, R. S. (eds.) (1992): 1992. Pinophyta (Gymnosperms) of New York State. Vol. NY State Museum Bull. 483. Univ. of the state of NY, Albany, NY. , 80 pages.
  • Montague, T. G. 1993. Comparative growth, shade tolerance, and stand dynamics of Picea mariana and Larix laricina along environmental gradients in northern Wisconsin peatlands. M.A. Thesis Univ. Wisconsin, Madison, WI,
  • Montague, T. G.; Givnish, T. J. 1996. Distribution of black spruce versus eastern larch along peatland gradients: relationship to relative stature, growth rate, and shade tolerance. Canad. J. Bot. 74(9): 1514-32. (Also Thuja)
  • Moore, B. 1917. Some factors influencing reproduction of red spruce, balsam fir and white pine. J. Forest. 15: 827-53.
  • Moore, B. 1926. Influence of certain soil and light conditions on the establishment of reproduction in northeastern conifers. Ecology 7: 191-220.
  • Morgenstern, E. K. 1969. Genetic variation in seedlings of Picea mariana (Mill.) BSP. I. Correlation with ecological factors. Silvae Genet. 18: 151-67.
  • Morgenstern, E. K. 1978. Range-wide genetic variation of black spruce. Canad. J. Forest Res. 8: 463-73.
  • Morgenstern, E. K. 1962. Note on chromosome morphology in Picea rubens Sarg. and Picea mariana (Mill.) BSP. Silvae Genet. 11: 163-4.
  • Morgenstern, E. K. 1969. Genetic variation in seedlings of Picea mariana (Mill.) BSP. II. Variation patterns. Silvae Genet. 18: 161-7.
  • Morgenstern, E. K.; Farrar, J. L. 1964. Introgressive hybridization in red spruce and black spruce.
  • Morgenstern, E. K.; Farrar, J. L.; Corriveau, A. G.; Fowler, D. P. 1981. A provenance test of red spruce in nine environments in eastern Canada. Canad. J. Forest Res. 11: 124-31.
  • Morgenstern, E. K.; Fowler, D. P. 1969. Genetics and breeding of black spruce and red spruce. Forest. Chron. 45: 1-5.
  • Morgenstern, E. K.; Mullin, T. J. 1990. Growth and survival of black spruce in the range-wide provenance study. Canad. J. Forest Res. 20(2): 130-43.
  • Mosseler, A. et.al. 2000. Indicators of population viability in red spruce, Picea rubens. I. Reproductive traits and fecundity. Canad. J. Bot. 78: 928-940.
  • Murphy, L. S. 1917. The red spruce- its growth and management.
  • Murray, E. 1984. Notae spermatophytae no. 4: unum minutum monographum generis Piceae. Kalmia 14: 10-5.
  • Nienstaedt, H. 1967. Chilling requirements of seven Picea species. Silvae Genet. 16(2): 65-8.
  • Niklas, K. J. 1984. The motion of windborne pollen grains around conifer ovulate cones: Implications on wind pollination. Amer. J. Bot. 71(3): 356-74.
  • Niklas, K. J.; U., K. T. P. 1983. Conifer ovulate cone morphology: implications on pollen impaction patterns. Amer. J. Bot. 70(4): 568-77.
  • Nkongolo, K. K. 1996. Chromosome analysis and DNA homology in three Picea species, P. mariana, P. rubens, and P. glauca (Pinaceae). Pl. Syst. Evol. 203: 27-40.
  • Nkongolo, K. K. 1999. RAPD variations among pure and hybrid populations of Picea mariana, P. rubens and P. glauca (Pinaceae), and cytogenetic stability of Picea hybrids: identification of species-specific RAPD markers. Pl. Syst. Evol. 215: 229-239.
  • Nkongolo, K. K.; Deverno, L.; Michael, P. 2003. Genetic validation and characterization of RAPD markers differentiating black and red spruces: molecular certification of spruce trees and hybrids. Pl. Syst. Evol. 236: 151-163.
  • Norberg, R. Å. 1973. Autorotation, self-stability and structure of single-winged fruits and seeds (samaras) with comparative remarks on animal flight. Biological Review 48: 561-96.
  • Park, Y. S.; Fowler, D. P. 1984. Inbreeding in black spruce (Picea mariana (Mill.) B.S.P.): self-fertility, genetic load, and performance. Canad. J. Forest Res. 14: 17-21.
  • Parker, W. H. et al. et.al. 1983. Habitat-dependent morphological and chemical variation in Picea mariana from northwestern Ontario. Canad. J. Bot. 61: 1573-9.
  • Parker, W. H.; van Niejenhuis, A.; Charrette, P. 1994. Adaptive variation in Picea mariana from northwestern Ontario determined by short-term common environmental tests. Canad. J. Forest Res. 24: 1653-61.
  • Pavek, D. S. 1993. Picea pungens. ()
  • Percy, K. 1986. The effects of simulated acid rain on germinative capacity, growth and morphology of forest tree seedlings. New Phyt. 104: 473-84.
  • Perkins, T. D.; Adams, G. T.; Klein, R. M. 1991. Desiccation of freezing? Mechanisms of winter injury to red spruce foliage. Amer. J. Bot. 78(9): 1207-17.
  • Perron, M.; Bousquet, J. 1997. Natural hybridization between black spruce and red spruce. Molec. Ecol. 6: 725-34.
  • Peterson, E. B. 1965. Inhibition of black spruce primary roots by a watersoluble substance in Kalmia angustifolia. Forest Sci. 11: 473-9.
  • Pielou, E. C. 1988. The world of northern evergreens. Cornell Univ. Press, Ithaca, NY. , 174 pages.
  • Pillai, A. 1964. Root apical organization in gymnosperms- some conifers. Bull. Torrey Bot. Club 91: 1-13.
  • Pitel, J. A.; Durzan, D. J. 1978. Chromosomal proteins of conifers. 1. Comparison of histones and nonhistone chromosomal proteins from dry seeds of conifers. Canad. J. Bot. 56(16): 1915-27.
  • Place, I. C. M. 1955. The influence of seed-bed conditions on the regeneration of spruce and balsam fir. (For. Res. Div. Tech Note 50?)
  • Prager, E. M.; Fowler, D. P.; Wilson, A. C. 1976. Rates of evolution in conifers (Pinaceae). Evolution 30: 637-49.
  • Pregitzer, K. S. et.al. 2002. Fine root architecture of nine North American trees. Ecol. Monogr. 72: 293-309.
  • Price, R. A. 1989. The genera of Pinaceae in the southeastern United States. J. Arnold Arbor. 70: 247-305.
  • Rajora, O. P.; Mosseler, A.; Major, J. E. 2000. Indicators of population viability in red spruce, Picea rubens. II. Genetic diversity, population structure, and mating behavior. Canad. J. Bot. 78: 941-956.
  • Randall, A. G. 1974. Seed dispersal into two spruce-fir clearcuts in eastern Maine. Research in the Life Sciences 21: 1-15.
  • Rees, L. W. 1929. Growth studies in forest trees: Picea rubens Link. J. Forest. 27: 384-403.
  • Rehder, A. A. 1907. Some new or little known forms of New England trees. Rhodora 9: 109-17.
  • Riding, R. T. 1976. The shoot apex of trees of Picea mariana of differing rooting potential. Canad. J. Bot. 54(23): 2672-8.
  • Roche, L. 1969. Variation in growth behavior of fifteen red spruce (Picea rubens) provenances at three sites in Quebec.
  • Roche, L. 1969. A genecological study of the genus Picea and seedlings grown in a nursery. New Phyt. 68: 505-54.
  • Roe, E. I. 1949. Sphagnum moss retards black spruce regeneration.
  • Roller, J. H. 1942. Effect of heat and light on red spruce. Castanea 7(3): 49-50.
  • Ruel, J. C.; Doucet, R.; Boily, J. 1995. Mortality of balsam fir and black spruce advance growth 3 years after clear-cutting. Canad. J. Forest Res. 25: 1528-37. (French summary)
  • Rushforth, K. D. 1978. Tree genera: 7. The spruces- Picea. Arboric. J. 3(4): 246-55.
  • Sarvas, R. 1968. Investigations on the flowering and seed crop of Picea abies. Commun. Inst. For. Fenn. 67: 1-84.
  • Sarvas, R. 1970. Investigations on the flowering and seed crop of Picea abies. Commun. Inst. For. Fenn. 67: 5-78.
  • Schaberg, P. G. et.al. 1998. Photosynthetic capacity of red spruce during winter. Tree Physiology 18: 271-276.
  • Schaberg, P. G. et.al. 2000. Seasonal patterns of carbohydrate reserves in red spruce seedlings. Tree Physiology 20: 549-555.
  • Schier, G. A. 1996. Effect of aluminum on growth of newly germinated and 1-year-old red spruce (iPicea rubens) seedlings. Canad. J. Forest Res. 26: 1781-7. (French summary)
  • Schmidt, P. A. 1989. Contributions to the taxonomy and evolution of the genus Picea A. Dietr. Flora 182: 435-61. (In German; English summary)
  • Schmidt-Vogt, H. 1978. Genetics of Picea abies (L.) Karst. Ann. Forest. 7: 147-86.
  • Schmidt-Vogt, H. 1974. The taxonomic status of Norway spruce (Picea abies (L.) Karst.) and Siberian spruce (P. obovata Ledeb.): A contribution toward the introduction of genecology into taxonomy of trees. Allg. Forst- Jagd-Zeitung 145(3): 45-60. (In German; English & French summaries)
  • Scott, J. T.; Siccama, T. G.; Johnson, A. H.; Breisch, A. R. 1984. Decline of red spruce in the Adirondacks, New York. Bull. Torrey Bot. Club 111: 438-44.
  • Seiler, J. R.; Cazell, B. H. 1990. Influence of water stress on the physiology and growth of red spruce seedlings. Tree Physiology 6: 69-77.
  • Shirley, H. L. 1945. Reproduction of upland conifers in the Lake States as affected by root competition and light. Amer. Midl. Naturalist 33: 537-612.
  • Siccama, T. G.; Bliss, M.; Vogelmann, H. W. 1982. Decline of red spruce in the Green Mountains of Vermont. Bull. Torrey Bot. Club 109: 162-8.
  • Sidhu, S. S.; Staniforth, R. J. 1986. Effects of atmospheric fluorides on foliage, and cone and seed production in balsam fir, black spruce, and larch. Canad. J. Bot. 64: 923-31.
  • Silver, W. L.; Siccama, T. G.; Johnson, C.; Johnson, A. H. 1991. Changes in red spruce populations in montane forests of the Appalachians, 1982-1987. Amer. Midl. Naturalist 125: 340-7.
  • Simard, M. J.; Berberon, Y.; Sirois, L. 1998. Conifer seedling recruitment in a southeastern Canadian boreal forest: The importance of substrate. J. Veg. Sci. 9: 575-582.
  • Simola, L. K. 1976. Ultrastructure of non-viable seeds of Picea abies. Zeitschr. Pflanzenphysiol. 78(3): 245-52.
  • Sirois, L.; Begin, Y.; Parent, J. 1999. Female gametophyte and embryo development of black spruce along a shore-hinterland climatic gradient of a recently created reservoir, northern Quebec. Canad. J. Bot. 77: 61-69.
  • Smallidge, P. J.; Leopold, D. J. 1994. Forest community composition and juvenile red spruce (Picea rubens) age-structure and growth patterns in an Adirondack watershed. Bull. Torrey Bot. Club 121: 345-56.
  • Solomon, D. S.; Leak, W. B. 1994. Migration of tree species in New England based on elevational and regional analysis.
  • Sproule, A. T. 1988. Mating system dynamics and population structure in natural stands of black spruce (Picea mariana (Mill.) BSP). Ph.D. Dissertation Univ. Alberta, Edmonton,
  • Stoehr, M. U.; Farmer, R. E. 1986. Genetic and environmental variance in cone size, seed yield, and germination properties of black spruce clones. Canad. J. Forest Res. 16: 1149-1151.
  • Strimbeck, G. R. et al. et.al. 1995. Midwinter dehardening of montane red spruce during a natural thaw. Canad. J. Forest Res. 25: 2040-4. (French summary)
  • Sullivan, J. 1994. Picea abies. ()
  • Sullivan, J. 1993. Picea rubens. ()
  • Suringar, J. V. 1931. Nomenklaturalia. Mitt. Deutsch. Dendrol. Ges. 43: 199-217. (In German)
  • Sutton, R. F. 1987. Root growth capacity and field performance of jack pine and black spruce in boreal stand establishment in Ontario. Canad. J. Forest Res. 17(8): 794-804.
  • Szmidt, A. E.; Sigurgeirsson, A.; Wang, X. R.; Hallgren, J. E.; Lindgren, D. 1988. Chloroplast DNA variation among North American Picea species, and its phylogenetic implications. In: Molecular genetics of forest trees. Frans Kempe Symp., Umea. , 49-65 pages.
  • Tabor, C. A. 1990. Recurrent appearance of bisporangiate strobili with proliferation on Picea abies. Rhodora 92(872): 257-63.
  • Taylor, G. E. et.al. 1986. Carbon dioxide assimilation and growth of red spruce (Picea rubens Sarg.) seedlings in response to ozone, precipitation chemistry, and soil type. Oecologia 70: 163-71.
  • Teeri, J. A. 1968. The ecology of subalpine black spruce in New England. , Thesis Univ. of New Hampshire, Durham, NH,
  • Teeri, J. A. 1969. The phytogeography of subalpine black spruce in New England. Rhodora 71: 1-6.
  • Tobi, D. R.; Wargo, P. M.; Bergdahl, D. R. 1995. Growth reponse of red spruce after known periods of winter injury. Canad. J. Forest Res. 5: 669-81. (French summary)
  • Tomlinson, G. H. 1983. Air pollutants and forest decline. Environ. Sci. Technol. 17: 246A-56A.
  • Tyree, M. T.; Cheung, Y. N. S.; MacGregor, M. E.; Talbot, A. J. B. 1978. The characteristics of seasonal and ontogenetic changes in the tissue-water relations of Acer, Populus, Tsuga, and Picea. Canad. J. Bot. 56(6): 635-47.
  • Tyrell, L. E.; Boerner, R. E. J. 1987. Larix laricina and Picea mariana: relationships among leaf lifespan, foliar nutrient patterns, nutrient conservation, and growth efficiency. Canad. J. Bot. 65: 1570-7.
  • Tyrrell, L. E.; Boerner, E. J. 1987. Larix laricina and Picea mariana: relationships among leaf life-span, foliar nutrient patterns, nutrient conservation, and growth efficiency. Canad. J. Bot. 65: 1570-7.
  • Uchytil, R. J. 1991. Picea mariana. ()
  • Van Deusen, P. C. 1984. Analysis of Great Smoky Mountain red spruce ring data.
  • Vincent, A. B. 1965. Black spruce: a review of its silvics, ecology and silviculture. Publ. 1100. Canadian Dept. Forestry, Ottawa, Ontario, Canada.
  • Von Rudloff, E. 1966. Gas-liquid chromatography of terpenes. Part XIV. The chemical composition of the volatile oil of the leaves of Picea rubens Sarg. and chemotaxonomic correlations with other North American spruce species. Phytochemistry 5: 331-41.
  • Von Rudloff, E. 1967. Chemosystematic studies in the genus Picea (Pinaceae). I. Introduction. Canad. J. Bot. 45: 891-901.
  • Von Rudloff, E. 1967. Chemosystematic studies in the genus Picea (Pinaceae). II, The leaf oil of Picea glauce and P. mariana. Canad. J. Bot. 45: 1703-14.
  • Wang, Z. M.; Lechowicz, M. J.; Potvin, C. 1995. Responses of black spruce seedlings to simulated present versus future seedbed environments. Canad. J. Forest Res. 25: 545-54. (French summary)
  • Warren, R. 1982. Spruces in the Arnold Arboretum. Arnoldia (Jamaica Plain) 42: 102-29.
  • Weidlich, W. H.; Teeri, J. A. 1976. The occurrence of bisporangiate strobili in subalpine black spruce. Rhodora 78(813): 6-16.
  • Weiss, M. J. et al. et.al. 1985. Cooperative survey of red spruce and balsam fir decline and mortality in New York, Vermont, and New Hampshire, 1984. Interm Report. (Broomall, PA)
  • Weng, C.; Jackson, S. T. 2000. Species differentiation of North American spruce (Picea) based on morphological and anatomical characteristics of needles. Canad. J. Bot. 78: 1367-1383.
  • White, E. E.; Watkins, R. F.; Fowler, D. P. 1993. Comparative restriction site maps of chloroplast DNA of Picea abies, Picea glauca, Picea mariana, and Picea sitchensis. Canad. J. Forest Res. 23: 427-35. (Also Pinus & Pseudotsuga)
  • Wilcox, H. E.; Wang, C. J. K. 1987. Ectomycorrhizal and ectendomycorrhizal associations of Phialophora finlandia with Pinus resinosa, Picea rubens, and Betula alleghaniensis. Canad. J. Forest Res. 17(8): 976-90.
  • Wilkinson, R. C. 1970. Chemical evidence of species relationships for northeastern North American spruces. Ph.D. Dissertation Mich. St. Univ., East Lansing, Mich.,
  • Wilton, W. C. 1963. Black spruce seed fall immediately following fire. Forest. Chron. 39: 477-8.
  • Wright, J. W. 1955. Species crossability in spruce in relation to distribution and taxonomy. Forest Sci. 1: 319-49.
  • Wright, J. W. 1953. Pollen dispersion studies: some practical applications. J. Forest. 51: 114-8.
  • Wright, J. W. 1952. Pollen dispersion of some forest trees.
  • Yakimchuk, R.; Hoddinott, J. 1994. The influence of ultraviolet-B light and carbon dioxide enrichment on the growth and physiology of seedlings of three conifer species. Canad. J. Forest Res. 24: 1-8.
  • Yamanashi, S. H. et.al. 1998. The effect of Kalmia angustifolia on the growth, nutrition, and ectomycorrhizal symbiont community of black spruce. Forest Ecol. & Manag. 105: 197-207.
  • Yeh, F. C.; Khalil, M. A.; El-Kassaby, Y. A.; Trust, D. C. 1986. Allozyme variation in Picea mariana from Newfoundland: genetic diversity, population structure, and analysis of differentiation. Canad. J. Forest Res. 16: 713-20.
  • Zhu, H.; Mallik, A. U. 1994. Interactions between Kalmia and black spruce: isolation and identification of allelopathic compounds. J. Chem. Ecol. 20: 407-21.
  • Zine El Abidine, A.; Bernier, P. Y.; Plamondon, A. P. 1994. Water relations parameters of lowland and upland black spruce: seasonal variations and ecotypic differences. Canad. J. Forest Res. 24: 587-93.
  • Zine El Abidine, A.; Bernier, P. Y.; Stewart, J. D.; Plamondon, A. P. 1994. Water stress preconditioning of black spruce seedlings from lowland and upland sites. Canad. J. Bot. 72(10): 1511-8.